US011610568B2

a2 United States Patent (10) Patent No.: US 11,610,568 B2
Chanquion et al. 45) Date of Patent: Mar. 21, 2023
(54) MODULAR AUTOMATED MUSIC (58) Field of Classification Search
PRODUCTION SERVER CPC .. G10H 1/0025; G10H 1/0058; G10H 1/0066;
) o G10H 2210/145; G10H 2240/056;
(71) Applicant: BYTEDANCE INC., Wilmington, DE (Continued)
(Us)
(72) Inventors: Pierre Chanquion, London (GB); (56) References Cited

Jonathan Cooper, London (GB);

Eamon Hyland, London (GB); U.S. PATENT DOCUMENTS

Edmund Newton-Rex, London (GB); 6,504,089 B1* 1/2003 Negishic........... GOGF 16/683
Jason Storey, London (GB); David 84/615
Trevelyan, London (GB) 10,679,596 B2* 6/2020 Balassanian GO6N 20/00
(73) Assignee: BYTEDANCE INC., Wilmington, DE (Continued)
Us) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 EP 1956586 A2 * 82008 ... G10H 1/0025
U.S.C. 154(b) by 268 days. EP QWY T8
(Continued)
(21) Appl. No.: 16/955,269
(22) PCT Filed: Dec. 17, 2018 OTHER PUBLICATIONS
(86) PCT No.: PCT/EP2018/085326 International Patent Application No. PCT/EP2018/085327; Int’l
§ 371 (c)(1), Search Report and the Written Opinion; dated Apr. 16, 2019; 20
(2) Date: Jun. 18, 2020 pages.
(87) PCT Pub. No.. WO2019/121576 (Continued)
PCT Pub. Date: Jun. 27, 2019 Primary Examiner — Christina M Schreiber
(65) Prior Publication Data (74) Attorney, Agent, or Firm — BakerHostetler
US 2020/0394990 Al Dec. 17, 2020 57 ABSTRACT
30) Foreign Application Priority Data A music production system comprises: a computer interface
p Y p p
comprising at least one input for receiving an external
Dec. 18, 2017 (GB) oottt 1721212 request for a piece of music and at least one output for
Dec. 18,2017 (GB) .oceeeereevvnecrecireeneis 1721215 transmitting a response to the external request which com-
(Continued) prises or indicates a piece of music incorporating first music
data; a first music production component configured to
(51) Imt. ClL rocess second music data according to at least a first input
p 2 p
G10H 1/00 (2006.01) setting so as to generate the first music data; a second music
GO6N 3/08 (2006.01) production component configured to receive via the com-
GO6N 7/00 (2006.01) puter interface an internal request, and provide the second
(52) US. CL music data based on at least a second input setting denoted
CPCccoee. GI10H 1/0025 (2013.01); GO6N 3/08 by the internal request; and a controller configured to
(2013.01); GO6N 7/005 (2013.01); determine in response to the external request the first and
(Continued) (Continued)

SETTINGS | %
DB L/
14 . :
/ : i
|

4 PRODUCTION 177
1 MANAGEMENT

ARRANGEMENT
-

'
i : 6\7j/~ { sermnes | [sequencing F- L

i
PRODUCTION ENGINE |

16,
|

X

TAGS {~_ 20
TRACK !»\/ 22

JOBS
pit3)

24 ~

US 11,610,568 B2
Page 2

second input settings, and instigate the internal request via
the computer interface.

17 Claims, 12 Drawing Sheets

(30) Foreign Application Priority Data
Dec. 18,2017 (GB) oo 1721216
Feb. 9, 2018 (GB) ccoivveiireerrciciecicceneen 1802182
(52) US. CL
CPC ... GI0H 1/0058 (2013.01); G10H 1/0066

(2013.01); GI0H 2210/145 (2013.01); G10H
2240/056 (2013.01);, GI0H 2240/075
(2013.01); GI0H 2240/131 (2013.01)
(58) Field of Classification Search

CPC ... G10H 2240/075; G10H 2240/131; GO6N
3/08; GO6N 7/005
USPC ittt 84/609

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0194984 Al* 12/2002 Pachet G10H 1/0025
84/609

2003/0128825 Al* 7/2003 Loudermilk HO04M 3/4285
379/102.01

2008/0190272 Al* 82008 Taub G10H 1/0058
84/645
2012/0297959 Al* 112012 Serletic GO9B 15/04
84/626
2016/0148605 Al* 5/2016 Minamitaka G10H 1/38
84/609
2018/0032611 Al1* 2/2018 Cameron GO6F 16/685

2020/0380940 Al* 12/2020 Abdallah ...
2020/0394990 Al* 12/2020 Chanquion
2021/0383781 Al* 12/2021 Moyer
2022/0180767 Al* 6/2022 Aharonson .

.. G11B 27/031
... G10H 1/0066
... G10H 1/0058
.. G10H 1/0083

FOREIGN PATENT DOCUMENTS

JP 2003-195866 A 7/2003
JP 2004-226892 A 8/2004
JP 2016-099445 A 5/2016
WO WO 2001/086628 A2 11/2001
WO WO-0186628 A2 * 11/2001 G10H 1/0025

WO WO-2006027605 A2 * 3/2006 GO6F 9/44526

OTHER PUBLICATIONS

David Cope; “The Algorithmio Composer”; vol. 18; ©2000.
International Patent Application No. PCT/EP2018/085326; Int’l
Search Report and the Written Opinion; dated Jul. 2, 2019; 21 pages.
David Cope; “The Algorithmic Composer”; the Composer Music
and Digital Audio Series; vol. 16; ©2000; 302 pages.

Lafferty et al.; “Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data”; University of Penn-
sylvania Scholarly Commons, Dept. Papers (CIS); Jun. 28, 2001; 10

pages.

* cited by examiner

US 11,610,568 B2

Sheet 1 of 12

Mar. 21, 2023

U.S. Patent

1 2Jn38i4
- b2
I i \
e
"| ssor
ZZ ™ Mowdl
02 "~ govi
Z
N INIONT y
NOILISOdNOD e (I
....................................... . [e—
' INIONZ NOILONAOYd ! _ oL
H
S _v) 9 >
e -+ onioN3NDas SONILLAS b ! \
. P
T INIWIONVHHY "
; " Idv
i]
¥ H
T T, ! \Q
t INIFINIDVYNVIN
IONVNHOIH3 1 oubndt
m (T
t
| < i
ONINIANTY OIANY e " \\ 8l
[y R ¥l
............... \-----------------------”\ 8a
\ ez SONILEIS

US 11,610,568 B2

Sheet 2 of 12

Mar. 21, 2023

U.S. Patent

Z 9Jn3H4

(N (uonisodwoo) IPIA

anenb
sqol 1aIn

- YR Q

wewesbueny

@ wsyabuese
1o8dp mgu »\@

AN
mr/ 1ebeuepy
UORINPOI serbsaol (Wl

PeIp A @

€9

o} Qi QOﬂEm wc@wm(

)

0} Qi 9oF mcm_mm<@

BARS |dY

sujeied

ysenbay qop

i~ opny

3\

US 11,610,568 B2

Sheet 3 of 12

Mar. 21, 2023

U.S. Patent

aa poid

£4

¢ m;:m_n_

aubug uonisodwoD

T

suibu3g uoonpoid

t

(Jons08 VYN B) IV

N~

A | opou Bunphiong

Vi

Jsouejeg peoT]

R

“yaspayanl/fdiy

US 11,610,568 B2

Sheet 4 of 12

Mar. 21, 2023

U.S. Patent

E:E

geiiis VLS

1no IR NI . oy

| sanseaw u | Ayeuoy | ool | 8is || (Z 1¥vd) zg i or

Zaigor

Laiqor 90y —

sainseaw u | Ayeuoy | owol | 8fis || (1 LYvd) L9 Qi gor

290%

U.S. Patent Mar. 21, 2023 Sheet 5 of 12 US 11,610,568 B2

<
[a\]
oM
0
Ke)
[e]
©
Y A
LN
)
| -
- S
o A
3] b
w0
\/‘\ (Q
jo)
m\/\
Z
g &
\\
B 3 5
5] 9o £
o D) a
5 = 9
A Fy A A

TN A

502

US 11,610,568 B2

Sheet 6 of 12

Mar. 21, 2023

U.S. Patent

IQIN

9 m;jw_u_

209s

Jasn oy yoed; Aiddng

h

G09S

Blep oipne Japuay

¥09S

jusuodwion
Buuepuas oipne o} Ajddng

A

c09s

1098

€09s

\

sued |BoISNW suiuLg}e

sBunias

uoponpoid oipne 8sooyd

Jasn wodj 1senbas anwoay

U.S. Patent Mar. 21, 2023 Sheet 7 of 12 US 11,610,568 B2

@
sl
) © i
£ 5 S
2 o =
% w 33|
£
o
¥ — T
% N~
0|1 0
N] =
N g Hel -
all° L
o H
2
E \,,m
N
B
< | -
-

23

US 11,610,568 B2

Sheet 8 of 12

Mar. 21, 2023

U.S. Patent

ow/

Q m.:._m_u_

AuouwLien

SONILLIS
»\ ININIONVHYY /:w
SONILLIS MOVYHL
| soniizs
NOILISOdNOD /wm
)
N\ SONILLIS OIany
A
@w.mm. 103443
o8
ww- aNnos
e SONILLIAS
L . INSNNYLSNI
Apoei sseq S1dvd

US 11,610,568 B2

Sheet 9 of 12

Mar. 21, 2023

U.S. Patent

o

eL—"

omsuen Buog -
snanb sqof doo 1oy |
{oipny) w -
mesues Buos -~ m It
ananb sqol |ajiN
M 3N2ANY): SO uMPNpod
2uBUs HORSOHILIOT - D $00f Hoonpod

*

DR:.L;....:.L;....:.L;.....N;...

be-

¢
1
'
+
'
'
'
i
'
3
:
i
'
'
!
'
i
'
:
!
A
s
'
'
v
h

~ Vi

)

IBAIBS (Y

U.S. Patent Mar. 21, 2023 Sheet 10 of 12 US 11,610,568 B2

\14

44/

REQUEST
MANAGER

Figure 10

\42

“—0
4+—»0

US 11,610,568 B2

Sheet 11 of 12

Mar. 21, 2023

U.S. Patent

— e
~ qof man
08~
\ 1QIN atqor
e \wm
| s3umpes aiqor |
08—
> ZLLLS
4a qof
AOLLLS
80118~
198euepn
€l 4 UoPINPOId
90L18 / . [o
vm_\ IS arqof manN | asuodsay
IdV < /
S\ (s)8unyes {tain Jo oipne) coMLS
MaN aiqor 1sanbai 1p3

@m\

vo/

2!

US 11,610,568 B2

Sheet 12 of 12

Mar. 21, 2023

U.S. Patent

T 2in3l4

142 €

14V 7 9aBlisinIssh JUBUFUGHMPOI Heliony auduy uoIsSORG) JpRlioInyY

% & E l . \ Z RRARE LB L AR G ,.u.
PO . | QL ¢ . 2% z s
PR o)t 2 o

00ct

US 11,610,568 B2

1
MODULAR AUTOMATED MUSIC
PRODUCTION SERVER

The present application is the national phase application
of PCT International Patent Application No. PCT/EP2018/
085326, filed on Dec. 17, 2018 which claims priority to
British ~ Patent Application No. GB1721212.7,
GB1721215.0, and GB1721216.8, filed on Dec. 18, 2017,
and claims priority to British Patent Application No.
GB1802182.4, filed on Feb. 9, 2018, all of which are
incorporated herein by reference in their entireties.

TECHNICAL FIELD

This disclosure relates to automated music production.

BACKGROUND

Automated music production based on artificial intelli-
gence (Al) is an emerging technology with significant poten-
tial. Research has been conducted into training Al systems,
such as neural networks, to compose original music based on
a limited number of input parameters. Whilst this is an
exciting area of research, many of the approaches developed
to date suffer from problems of flexibility and quality of the
musical output, which in turn limits their usefulness in a
practical context.

SUMMARY

One aim of this disclosure is to provide an automated
music production system with an improved interface that
allows flexible and sophisticated interaction with the system.
This opens up new and exciting use cases where the system
can be used as a creative tool for musicians, producers and
the like in a way that suits their individual needs and
preferences.

Afirst aspect of the invention provides a music production
system comprising: a computer interface comprising at least
one input for receiving an external request for a piece of
music and at least one output for transmitting a response to
the external request which comprises or indicates a piece of
music incorporating first music data; a first music production
component configured to process second music data accord-
ing to at least a first input setting so as to generate the first
music data; a second music production component config-
ured to receive via the computer interface an internal
request, and provide the second music data based on at least
a second input setting denoted by the internal request; and a
controller configured to determine in response to the exter-
nal request the first and second input settings, and instigate
the internal request via the computer interface.

In embodiments, the second music data may comprise at
least one music segment in digital musical notation format.

The second input setting may be a composition setting
and the second music production component may be a
composition engine configured to generate the at least one
music segment according to the composition setting.

The controller may be configured to determine search
criteria in response to the external request, search a library
for at least one music segment matching the search criteria,
and instigate the internal request if no matching segment is
located.

The second music production component may be config-
ured to select the at least one music segment from a library
according to the second input setting.

15

30

40

45

55

2

The second music production component may be config-
ured to search a library for a music segment matching the
second input setting, and if a matching segment is located,
provide the located matching segment to the first music
production component, and if no matching segment is
located, cause a composition engine of the music production
system to generate a music segment according to the second
input setting and provide the generated music segment to the
first production component.

At least one of the first music production component and
the second music production component may be configured
to generate music segments for the library.

The first music production component may be an audio
engine configured to generate the first music data as audio
data.

The audio engine may be configured to render the at least
one music segment according to the first input setting to
generate the audio data.

The first music production component may be configured
to generate the first music data in the form of at least one
music segment in digital musical notation format.

The music production system may comprise a request
manager configured to allocate the external request to the
controller and the internal request to the second music
production component.

The request manager may be configured to allocate each
request based on a type of the request.

The type of the request may be one of: an audio type, and
a musical notation type.

The request manager may be configured to allocate the
external request to a first queue for processing by the
controller, and the internal request to a second queue for
processing by the second music production component.

The first or second input settings may comprise at least
one of the following: a style parameter, a time signature; a
track duration, a number of musical measures, and one or
more musical parts.

The second music data may be rendered available to the
controller by a response to the internal request.

The second music production component may be config-
ured to store the second music data in a database in asso-
ciation with an identifier, wherein the response may com-
prise the identifier and thereby render the second music data
available to the controller.

The music production system may comprise a request
manager configured to assign respective identifiers to the
external and internal requests, wherein the controller may be
configured to store, in electronic storage, the first music data
in association with the identifier assigned to the external
request and the second music data in association with the
identifier assigned to the internal request.

The external request may be a request to edit the piece of
music.

The external request may comprise an identifier of the
piece of music to be edited.

The first and second input settings may be comprised in
a modified set of track settings, which is determined by
modifying, according to the edit request, a set of track
settings held in a database in association with the identifier.

The external request may comprise or identifies music
data of the track to be edited.

A second aspect of the invention provides a music pro-
duction system comprising: a computer interface comprising
at least one input for receiving requests and at least one
output for outputting a response to each of the requests; a
request manager configured to allocate each of the requests
based on a type of the request to one of a plurality of job

US 11,610,568 B2

3

queues; an audio engine configured to generate in response
to a first request allocated to a first of the job queues audio
data for a piece of music, wherein the response to the first
request renders the audio data available to a source of that
request; and a composition engine configured to generate in
response to a second request allocated to a second of the job
queues at least one music segment in digital musical nota-
tion format, wherein the response to the second request
renders the at least one music segment available to a source
of that request.

In embodiments, the request manager may be configured
to assign to each of the requests a unique job identifier.

The response to each request may comprise the job
identifier assigned to that request.

The audio engine may be configured to store the audio
data in a database in association with the job identifier
assigned to the first request such that the audio data is
rendered available by the job identifier in the response to the
first request.

The composition engine may be configured to store the at
least one music segment in the or another database in
association with the job identifier assigned to the second
request such that the at least one music segment is rendered
available by the job identifier in the response to the second
request.

The first request may be an external request.

The music production system may comprise a controller
coupled to the first job queue and configured to receive the
first request from the first job queue and instigate the
generation of the audio data by the audio engine in response
to the first request.

The second request may be an internal request instigated
by the controller in response to the first request.

The controller may be configured to receive the response
to the second request, obtain the at least one music segment,
and provide the at least one music segment to the audio
engine to instigate the generation of the audio data based on
the at least one music segment.

The second request may be an external request.

The second job queue may be coupled to the composition
engine such that the external second request is routed to the
composition engine directly.

At least one of the first request and the second request
may be a request to edit the piece of music.

The first request may be a request to edit the piece of
music and comprise an identifier of the piece of music,
wherein the audio data is generated based on at least one
existing setting held in a database in association with the
identifier and at least one new setting determined in response
to the first request.

The second request may be an edit request comprising an
identifier, wherein the at least one music segment is gener-
ated based on at least one existing setting held in a database
in association with the identifier and at least one new setting
determined in response to the second request.

At least one of the first request and the second request
may be a request to edit the piece of music which comprises
or identifies music data of the piece of music to be edited.
The music production system may comprise a controller
configured to create an edited version of the piece of music
by providing the music data to at least one of the audio
engine and the composition engine.

The music data in the request may comprise at least one
music segment in digital musical notation format.

At least one of the audio engine and the composition
engine may be coupled to multiple job queues for receiving
different types of request.

5

10

15

20

25

30

35

40

45

50

55

60

4

The external request may not define any input settings and
the system may be configured to determine the first and
second input settings autonomously.

A third aspect of the invention provides a method which
is performed in a music production system and comprises:
receiving, at a computer interface, an external request for a
piece of music; determining in response to the external
request at least first and second input settings; instigating via
the computer interface an internal request denoting the
second input setting; at a second music production compo-
nent, receiving the internal request via the computer inter-
face, and providing second music data based on the second
input setting; at a first music production component, pro-
cessing the second music data according to the first input
setting so as to generate first music data; and transmitting a
response to the external request which comprises or indi-
cates the piece of music incorporating the first music data.

A fourth aspect of the invention provides a method which
is performed in a music production system and comprises:
receiving, at a computer interface, a plurality of requests;
allocating each of the requests based on a type of the request
to one of a plurality of job queues; at an audio engine,
generating in response to a first of the requests allocated to
a first of the job queues audio data for a piece of music;
outputting at the computer interface a response to the first
request which renders the audio data available to a source of
that request; at a composition engine, generating in response
to a second of the requests allocated to a second of the job
queues at least one music segment in digital musical nota-
tion format; and outputting at the computer interface a
response to the second request which renders the at least one
music segment available to a source of that request.

A fifth aspect of the invention provides a computer
program product comprising executable instructions stored
on a non-transitory computer-readable storage medium and
configured, when executed at a music production system, to
cause the music production system to implement the steps of
either method.

BRIEF DESCRIPTION OF FIGURES

For a better understanding of the present invention, and to
show how embodiments of the same may be carried into
effect, reference is made to the following figures in which:

FIG. 1 shows a schematic block diagram of a music
production system;

FIG. 2 shows how an incoming job request may be
handled by a music production system;

FIG. 3 shows a high level overview of a music production
system with the core system components arranged in a stack;

FIG. 4 shows a schematic block diagram of a composition
engine;

FIG. 5 illustrates one example architecture of a compo-
sition engine for generating music segments for multiple
musical parts;

FIG. 6 shows a flow chart for a method of generating a
track in response to a request from a user;

FIG. 7 shows a schematic illustration of a possible struc-
ture of a settings database;

FIG. 8 illustrates a hierarchical selection mechanism for
selecting track settings;

FIG. 9 shows a schematic block diagram of one part of a
music composition system;

FIG. 10 shows a schematic block diagram of an applica-
tion programming interface; and

FIG. 11 shows a flow diagram illustrating a method of
editing a musical track; and

FIG. 12 shows an Al music production stack.

US 11,610,568 B2

5

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

An Al music production system will now be described
that can use Al to compose and/or produce original music.

The Al music production system may be referred below to
as the “Jukedeck” system.

Composing music has traditionally been the sole domain
of humans. Even with demonstrated advances in Al tech-
nologies, it has proven to be extremely difficult to apply
those technologies to music composition, such is music’s
complexity and nature. One form of Al, machine learning, is
now commonly used in fields such as image and speech
recognition. However, its application to music has previ-
ously seen little success. Reasons for this include the fol-
lowing:

1. Music is incredibly complex; it is multi-dimensional,
operating in both the pitch and time spaces, often with
numerous musical components simultaneously interact-
ing in many different ways. An Al system must be able to
comprehend and account for this complexity.

2. Historically, music production (arranging a piece, setting
its volume levels, applying effects, etc.) has largely been
a complex manual process that has required a variety of
advanced tools to complete. In order to automatically
generate a piece of music that can be used in the wide
variety of settings in which music is used today, a system
must not only automatically generate the musical score; it
must also automate this complex music production pro-
cess.

Introduction to Jukedeck’s Technology

The Jukedeck system incorporates a full-stack, cloud-
based music composer that addresses the complexities his-
torically associated with Al and music as discussed above.
This technology is based on advanced music theory and
combines neural networks in novel ways to compose and
produce unique, professional quality music in a matter of
seconds. The end-to-end technology stack can be sum-
marised as follows: (i) a genre and other overarching musi-
cal attributes are chosen, (ii) these elections are then com-
bined to form a lens through which individual notes and
sequences of notes are composed (music composition), (iii)
these composed notes are then produced into a full audio
track (music production). Below is a high-level overview of
the stack, from composition through production to a user
interface/API.

End-to-End Technology Stack

FIG. 12 shows a schematic function block diagram of the
Al music production system, which is shown to comprise an
automatic composition engine 2, an automatic production
engine 3, and an access component in the form of an
application programming interface (API) 14.

Automatic Music Composition Engine

The automatic music composition engine 2 performs the
first step in generating music. Traditionally, Al-based com-
posers have been either hard-coded, rule-based systems
(which generally produce tracks that sound very similar to
one another) or basic machine learning systems whose lack
of complexity rendered them incapable of generating mul-
tifaceted, pleasing music that could be useful to users in any
context.

By contrast, the composition engine 2 utilizes a novel
neural network structure to enable its machine learning
system to generate complex, well-structured, quality musi-
cal output. Among other things, this allows the system to:

Maximize the ability of musical parts to work well

together—novel techniques ensure the system gener-

10

15

20

25

30

35

40

45

50

55

60

65

6

ates musical parts that interact with one another in
musically convincing ways, significantly increasing the
overall quality of the generated music.

Better understand the metrical context of musical
choices—Other Al systems have difficulty with the
long-term memory necessary for understanding the
metrical context required when making compositional
choices. However, the present technology has solved
this problem, ensuring metrical context factors into
each compositional choice, which increases the quality
of the generated music.

Generate significantly varied output—By utilizing
machine learning techniques in place of hard-coded
rules, the composition engine 2 provides a musical
output that better reflects the characteristics of the
dataset on which it is trained. This means the output can
be more varied as hard-coded rules inherently limit the
range of output possibilities.

Automatic Music Production Engine

Whereas the automatic music composition engine 2 is

responsible for composing music (in MIDI or other digital
musical notation), the automatic music production engine 3
is responsible for applying music production techniques to
this composed music to create studio-quality audio tracks.
The production engine 3 automatically assembles the output
of the automatic music composition engine 2 into a fully
arranged and produced song, which is then output to an
audio file. It makes choices around which instruments and
sounds to use for each musical part, and automatically
renders, mixes and masters the audio in a sophisticated,
cloud-based audio engine (denoted by reference numeral 12
in FIG. 1—see below). This allows a song to be automati-
cally generated and produced according to a user’s desired
musical settings (such as genre, mood, and duration),
thereby allowing users to create novel songs with no prior
knowledge of musical concepts or music production tech-
niques.

The automated music production engine 3 has several key

differentiating features, including:

A high performance, cloud-based audio engine—Most
audio engines are designed to run on a local machine
and be controlled via a user interface to manipulate
audio. By contrast, the audio engine 12 of the Jukedeck
system runs in the cloud and is designed to automati-
cally produce audio with no user input. This means it
can be utilized by a wide variety of applications and
users, requires no expert musical knowledge, and is
highly scalable.

The ability to affect what happens at specific points within
a piece of music—Video creators almost always source
music after they have finished creating their video.
There are often certain points in a video that the creator
would like to accentuate with the use of music. Points
at which, for instance, the action is more or less intense,
and the video will be more effective if the music
matches. Existing methods of sourcing music for video
generally do not allow users to set specific points at
which certain events should happen in the music. By
contrast, the present disclosure provides “sync point”
and “intensity” features which in turn provide video
creators with this functionality, making their video
soundtracks more effective and cutting down on editing
time.

Sync Point—The Jukedeck system allows users to set
a sync point within their track to the nearest milli-
second. That is, it allows for a specific musical event
(such as a section change) to be positioned at a

US 11,610,568 B2

7

specific point in time within the track. This feature
allows the piece of music to be synchronized with
another piece of media (e.g. to some event happening
in an accompanying video). The Jukedeck system is
capable of setting multiple sync points at multiple
different points of time within the audio track.
Intensity—The Jukedeck system allows users to
specify the way in which the intensity of the music
should change over the course of the track. A defined
intensity curve maps to multiple properties of the
sound, and further enables the generated music to be
automatically shaped to fit an accompanying piece of
media, allowing musical structures such as a build-
up to a climax to happen at specific points in time.

This is not simply a case of allowing users to create a
piece of music using inputs that affect the sound at specific
points within the piece using pre-rendered audio stems;
rather, Jukedeck’s engine generates original audio in real-
time in response to user input. Rendering the audio in
real-time allows for far greater control over changes in the
music throughout the process. While stem-based systems
can only apply effects to the audio used to construct the
song, the Jukedeck system is able to directly alter the notes
which are being played, as well as change the sounds used
for each musical sequence, before they go through any
effects. This gives the system the potential to sound much
more realistic when responding to a change in desired sync
point or intensity. For example, in a slow-motion video of a
person diving into water, a sync point or intensity peak could
be chosen to coincide with the point at which he or she hits
the water, to create the effect of the music building up to that
climax.

The ability to edit a previously generated audio track—
Editability features ensure that any previously-gener-
ated audio track can be edited, and a new version can
be created by requesting that it adhere to new high-
level settings (such as a revised duration). This means
users can automatically generate a revised version of a
previously produced song that sounds similar to the
original while incorporating the required edits. This
allows users to quickly and efficiently change, for
instance, the duration of any song without possessing
any of the expert editing skill that would traditionally
be required for this task.

Neural network-based audio synthesis—An extension of
the technology is the ability to train a neural network to
convert MIDI data into audio data without the need for
third-party virtual instruments.

The ability to automatically arrange pre-rendered, human-
composed audio stems—The architecture of the Juke-
deck system is modular, which means the automatic
music production engine 3 can also dynamically rear-
range pre-rendered, human-composed audio stems—in
place of output of the automatic music composition
engine 2—for instances in which this functionality is
required. This means the present technology can be
used to fit pre-rendered audio stems to pieces of media
in which precise sync points are required.

Application Programming Interface (API)

The API 14 enables third-party developers to incorporate
the generation and customization of Al composed music—
either audio or MIDI— directly into their own applications,
in an app, a browser, or a mobile context.

A key feature of the described Al music production
system is an application programming interface (API) that
gives developers access to the full power of the Al compo-
sition and production system, allowing a user to automati-

10

15

20

25

30

35

40

45

50

55

60

65

8

cally create professional quality, customised music at scale.
A range of musical styles can be accessed at the click of a
button.

The API is an API for audio and MIDI. That is, with the
API a user can generate both audio files and their underlying
compositions in MIDI format. Some of the possible options
provided are summarized in the following table:

Audio MIDI

Select by style, tempo and
duration

Choose from a pre-generated
audio library or generate your

Select by style, tempo and duration
Generate full tracks

Generate MIDI loops

Control over key, time signature

own unique tracks and more
Edit existing tracks Edit existing tracks
MP3 and WAV output MIDI output

A broad range of applications can be powered using the
audio and MIDI APl including video creation, games,
music making, generating music to accompany visual or
other content in a variety of contexts, podcasting and content
automation.

Some of the benefits include the ability to: empower the
user’s creative experience with single-click, personalised
music, increase user engagement with unique features,
return a complete audio track to a platform with just a few
lines of code and provide users with artificially created
music that they are free to use without some of the custom-
ary restrictions associated with recorded music.

FIG. 3 shows a block diagram of the Al music production
system which gives a high-level overview of some of its core
functions that are described in further detail later.

Herein the term artificial intelligence is used in a broad
sense, and as such covers both machine learning (ML) and
also expert (rules-based) systems which are not ML systems,
as well as other forms of Al system that are neither ML nor
expert systems.

Although in the following, specific references are made to
ML and expert systems, or combination above, the descrip-
tion applies equally to other forms of Al system.

The system is shown to comprise the composition engine
2 and the production engine 3, which broadly represent two
core aspects of the system’s functionality. These are shown
arranged as layers in a stack, with the composition engine
below the production engine to reflect their respective
functions. Different possible structures of the stack are
described later, but these all broadly follow this division
between composition and production.

The composition engine 2 composes segments of music in
a digital musical notation format. Herein a digital musical
notation format means a digital representation of a musical
score in computer-readable form. One such format is an
event based format, where musical notes are indicated by
events with a start time/stop time. Such notations are known.
This can be a format in which musical notes are represented
as a pitch value and associated timing data denoting the start
and end time of the note (or viewed another way its start time
and duration or “sustain”). The notes can be represented
individually or as chords for example.

The pitch value is commonly quantised to musical half-
tones, but this is not essential and the level of quantisation
can depend on the type of music. Often other musical data
will also be embodied in the format, such as a velocity or
pitch modulation of each note. The velocity parameter traces
back to acoustic instruments and generally corresponds
intuitively to how hard a musical instrument, such as a piano

US 11,610,568 B2

9

or guitar, should be played. The format is such that it can be
interpreted by a synthesiser (such as a virtual instrument),
which in effect “plays™ the score to create audio, by inter-
preting the various parameters according to its internal
musical synthesis logic. One example of such a format is
MIDI, which is a standardised and widely used way of
representing scores, but the term applies more generally to
other formats, including bespoke formats. The following
refers to MIDI segments by way of example but the descrip-
tion applies equally to any other musical notation format.
The composition engine preferably operates based on
machine learning (ML) as described later.

Herein, the terms “music segment” and “musical seg-
ment” are synonymous and refer generally to any segment of
music in digital musical notation format. Each segment can
for example be musical bar, fraction of a bar (e.g. crotchet,
quaver, semi-quaver length segments etc.) or a sequence of
multiple bars depending on the context. A music segment
can be a segment within a longer musical score. A musical
score can be made up of multiple musical parts (correspond-
ing to different performative voices e.g. vocal parts, instru-
ments, left and right hand parts for a particular instrument
etc.). In sheet music notation, each part is generally scored
on a separate staff (although a chord part for example could
be scored using chord symbols), and viewed from this
perspective each music segment could correspond to a bar,
a fraction of a bar or sequence of bars for one of the parts.
This applies equally to MIDI segments, whereby a MIDI
segment refers to a music segment in MIDI format. Whilst
individual MIDI segments can be embodied in separate
MIDI files or data streams, different MIDI segments can be
embodied within the same MIDI file or data stream. It is also
possible to embody MIDI segments for different musical
parts within the same MIDI file or data stream, e.g. using
different MIDI channels for different parts, as is known in
the art. Accordingly, in the following description, MIDI
loops and individual segments of a MIDI loop or part may
both be referred to as music segments. It will be clear in
context what is being referred to.

A core function of the production engine 3 is taking a set
of'one or more MIDI segments and converting them to audio
data that can be played back. This is a complex process in
which typically multiple virtual instruments and audio
effects (reverb, delay, compression, distortion etc.) are care-
fully chosen to render different MIDI segments as individual
audio data, which are “mixed” (combined) synergistically to
form a final “track” having a desired overall musical and
sonic effect or “soundscape” where the track is essentially a
musical recording. The role of the production engine is
analogous to that of a human music producer and the
production engine can be configured based on expert human
knowledge. However, in use, the production process is an
entirely automated process driven by a comparatively small
number of selected production parameters. The production
engine is also an Al component, and can be implemented
either as an expert (rules-based), non-ML system, an ML
system or a combination of rules-based and ML processing.

One key service provided by the system is the creation of
piece of music, in the form of an audio track (e.g. WAV,
AIFF, mp3 etc.) “from scratch”, which involves the com-
position creating MIDI segments that form the basis of the
track that is produced by the production engine, by synthe-
sising audio parts according to the MIDI segments that are
then mixed in the manner outline above. This is referred to
herein as a “full stack” service.

10

15

20

25

30

35

40

45

50

55

60

65

10

However, a benefit of the system architecture is its ability
to offer individual parts of the functionality of the production
engine or the composition engine as services.

One such service is referred to herein as “MIDI as a
service” whereby a human producer can obtain ML-gener-
ated MIDI segments (e.g. loops) to which he can apply his
own personal production methods, for example in a digital
audio workstation (DAW). At its core, this is essentially
offering the composition engine’s functions as a standalone
service although as will become apparent, depending on the
way the system is implemented, this can draw on elements
of the production engine (as explained later, the division
between production and composition is implementation-
specific to an extent). This is particularly useful for users
with production skills but who lack composition skills or
musical inspiration.

Another such service is “production as a service”,
whereby a composer can provide to the system MIDI
segments that he has composed, where in this context it is
the Al system that assumes the role of producer, creating a
finished audio track from those MIDI segments. This offers
the functions of the production engine as a standalone
service and is essentially the opposite of MIDI as a service.
Production as a service is particularly useful for composers
who lack production skills or inclination.

All of the services can be accessed via the access com-
ponent 14 in the form of an application programming
interface (API), such as a web API, whereby API requests
and responses are transmitted and received between an
external device and an API server of the system via a
computer network such as the Internet. The access compo-
nent 14 comprises a computer interface to receive internal
and external requests as described later.

Regarding the division between composition and produc-
tion, although each of these has certain core, defining
characteristics, there is some flexibility on where the line is
drawn in terms of the system architecture. Ultimately, the
system is structured in line with the musical principles
according to which it operates.

In simple terms, the traditional process of music creation
can be considered in the following stages:

1. Composition

2. Performance (or humanization)

3. Production

Depending on the context, certain forms of composition
can be broken up into two relatively distinct sub-stages:
element composition and arrangement. Here, element com-
position refers to the creation of the essential musical
elements that make up a track, which are then arranged to
create a piece of music with convincing long term structure.
These can both fall within the remit of a composer, or they
can be quite separate stages, and historically this has been
dependent to a certain extent on the style of music. However,
in other contexts composition and arrangement can essen-
tially be performed as one. The term “composition” as it is
used herein can refer to composition that incorporates
arrangement or element composition depending on the con-
text. Performance would traditionally be the elements of
variation introduced by a human performer (such as timing/
velocity variations etc.), and production the process of
capturing that performance in a recording. Over time, how-
ever, the lines between these aspects have become more
blurred, particularly with more modern electronic music that
can be created with no more than minimal human perfor-
mance, using MIDI sequencing and the like, leading to a
greater emphasis being placed on production than perfor-
mance in some instances. Nowadays, the term production

US 11,610,568 B2

11

can cover a broad range of things, such as balancing the
levels of individual channels, equalization, dynamic control
(compression, limiting etc.) and other audio effects (reverb,
delay, distortion etc.), the selection of virtual instruments to
generate audio for individual channels etc.

In terms of the implementation of the Al music production
system, the composition, arrangement and performance
functions can be implemented as essentially standalone
functions of the production engine, which take MIDI seg-
ments from the composition engine, and arrange and human-
ise them respectively. For example, the MIDI segments
could be short loops that are strictly time quantised to
fractions (e.g. Vis or ¥42) of a bar. These can then be arranged
(e.g. according to a verse-chorus type structure), and per-
formance can be added by adding a degree of variation
(temporal, velocity, pitch etc.) to approximate an imperfect
human performance. With this approach, it can be conve-
nient to implement these functions in the production engine,
along with the MIDI processing performed as part of the
final music production process.

However, an equally viable approach would be to amal-
gamate one or both of these functions with the composition
itself, whereby the ML-composition engine is trained to
compose music with convincing long term structure and
possibly humanisation, within the composition engine.

Thus arrangement and performance can be implemented
in the production engine, the composition engine or a
combination of both.

In a practical context the architecture of the system will to
some extent reflect the approach that is taken to musical
composition and arrangement.

It is noted that humanisation in particular is an optional
component, and may not be desirable for every type of
music (e.g. certain styles of electronica).

Composition Engine:

A possible structure of the composition engine 2 is
described below. First certain underlying principles that feed
into the design of the composition engine 2 are discussed.

A Probabilistic Sequence Model (PSM) is a component
which determines a probability distribution over sequences
of values or items. This distribution can either be learned
from a dataset of example sequences or fixed a priori, e.g. by
a domain expert. By choosing an appropriate dataset or
encoding suitable expert knowledge, a PSM can be made to
reflect typical temporal structures in the domain of interest,
for example, typical chord or note sequences in music.

A PSM can be used to generate sequences according to its
distribution by sampling one item at a time from the implied
probability distribution over possible next items given a
prefix of items sampled so far. That is, each item is selected
according to a probability distribution of possible items that
is generated by the PSM based on one or more of the items
that have been chosen already. In the context of the com-
position engine, the items are music segments, which may
for example correspond to a fraction of a bar (e.g. Vis, V52
etc.) at the level of the composition engine but which can be
segments of any length depending on how the PSM is
configured. Each music segment can for example corre-
spond to an individual note or chord at a particular point in
the sequence.

The probability distribution provides a set of candidate
music segments (notes, chords etc.) for selection for a
sequence—based on one or more music segments that have
already been selected for the sequence—and an associated
probability value for each candidate music segment, which
defines how likely that music segment is to be selected as the
next music segment in the sequence. Because the output is

20

35

40

45

60

12

probabilistic, this introduces an element of variation
whereby the same composition settings can give rise to
different compositions (as described below, an additional
probabilistic element can also be introduced in selecting the
composition settings themselves).

Examples of PSMs include Markov chains, probabilistic
grammars, and recurrent neural networks with a probabilis-
tic final layer (SOFTMAX etc.).

A Composition Engine (CE) is a system which is able to
turn a small number of composition parameters into either a
complete musical score or a shorter section of music,
possibly with an arbitrary number of parts. A part is under-
stood to be a division of musical material between perfor-
mative voices, which can then be rendered in distinct ways.
This distinction is fundamental in the practice of music
production; for example, different musical instruments and
spatial parameters can be assigned to each part in order to
simulate a physical musical performance.

It may be possible to build a relatively basic composition
engine that can provide multiple parts with a single PSM,
such as a neural network. That is, by building a single PSM
over a complete moment-by-moment description of all
aspects of a multi-part composition. Such an approach is
viable, however with more complex composition this may
necessitate some internal compromises to simplify the
model and make it workable. Whilst this may be sufficient
in some contexts, other approaches may be beneficial when
it comes to more complex and intricate composition.

Accordingly, depending on the level of complexity, it may
be appropriate to divide the task between multiple PSMs,
each of which has a specialised role, such as focusing on a
particular combination of attributes, or a particular kind of
part. In that case an important modelling decision is how
specific each PSM’s scope should be. Bringing together a
loosely coupled collection of PSMs in a modular approach
has the potential for great flexibility in how individual
requests to the CE can be serviced.

Using the technology described below, it is possible to
coordinate each PSM to work coherently with the others,
without limiting the capabilities of any individual PSM. That
is, these principles provide a solution to the problem of
sharing information between multiple PSMs in a flexible
way. The main elements of this technology can be summa-
rized as follows:

1. A modular extensible system for working with musical
attributes such that they can form part of the input to or
output from a PSM.

2. Multiple PSMs responsible for modelling restricted
combinations of attributes and/or parts.

3. A mechanism to condition the events sampled from a
PSM on attributes produced by another or from an
external constraint.

These will now be described in detail.

1. A modular extensible system for working with musical
attributes such that they can form part of the input to or
output from a PSM.

A musical event is a complex object that can be described
in terms of a potentially unbounded number of aspects or
attributes pertaining to the event, including intrinsic prop-
erties such as pitch, duration, vibrato etc., but also the
event’s relationships with its context, such the underlying
harmony, its position in time, whether a note is higher or
lower than the previous note, etc. Focusing on a limited
number of these “viewpoints” allows a PSM to focus on
capturing the probabilistic structure in certain aspects of
musical sequences (in order to obtain a tractable model)
whilst leaving others to be dealt with by some other system.

US 11,610,568 B2

13

Two PSMs can be coordinated by sharing one or more
viewpoints; for example values for a viewpoint can be
generated from one PSM and fed in as constraints on the
sampling space from the other. This vastly reduces the
complexity of the modelling problem. A modular approach
to working with viewpoints means that PSMs can easily be
created to model arbitrary combinations of viewpoints,
whilst ensuring consistent coordination between the PSMs,
both during training and generation.

2. Having multiple PSMs responsible for modelling
restricted combinations of attributes and/or parts.

A “divide and conquer” approach to solving the complex
composition problem is to provide specialised PSMs for
particular musical attributes (in particular styles). E.g., one
PSM may specialise in producing chord symbols with
durations, and another might specialise in chord symbols
and melody note pitches and durations. This means that each
PSM can focus on modelling its combination of attributes
accurately, leading to high-quality, musically convincing
output. The loose coupling of PSMs means that they can be
used freely in combinations chosen at the point of servicing
a composition request, allowing the system to be flexible in
the choice of numbers and kinds of parts that can be
generated for one composition.

3. Ability to condition the events sampled from a PSM on
attributes produced by another.

Certain PSMs can be used in a way which allow the
outputs of one to be the (perhaps partial) inputs of another.
For example, A PSM over melody notes with chord symbols
could be conditioned to match the chord symbol produced
by a different PSM. This promotes coherence between parts,
and allows the composition engine 2 to take advantage of the
modularity of the multiple PSM approach without sacrific-
ing musical quality.

FIG. 4 shows further details of one possible configuration
of the composition engine 2 according to the principles set
out above. In this case, the task is divided between multiple
neural networks but these could be other forms of PSM as
indicated.

The composition engine 2 is shown having an input 402
and an output 404, which are an internal input and output
respectively. The composition engine input 402 is config-
ured to receive requests for MIDI segments, each having a
job identifier (ID) assigned as described below.

A key function of the composition engine is generating
musically cooperating music segments for different musical
parts, which are structured to be performed simultaneously
to create a coherent piece of music. The MIDI segments can
be midi “loops” which can be looped (repeated) in order to
build up a more complex track. If different MIDI loops are
provided for different musical parts, these can be looped
simultaneously to achieve the effect of the parts playing
together. Alternatively, multiple parts can be captured in a
single MIDI loop. However, the principles can be extended
such that the composition engine 2 provides longer sections
of music, and even a complete section of music for each part
that spans the duration of the track.

Music segment(s) for multiple musical parts can be
requested in a single job request. Where different passages
of music are requested separately (e.g. verse and chorus),
these can be requested by separate job requests, though the
possibility of requesting such passages of music in a single
job request (e.g. requesting verse and chorus together) is
also viable. These job request(s) correspond to the job
requests of FIG. 2 (described below), but are labelled 406a,
4065 in FIG. 4. Note that these job requests could be
received directly from an external input of the access com-

10

15

20

25

30

35

40

45

50

55

60

65

14

ponent (see FIG. 1, below), or be received as an internal job
request as explained with reference to FIG. 2. Each job
request comprises the job ID and a set of musical compo-
sition parameters, which in this example are:

Field Name Type Description

n__measures Number Length in measures (bars) of the MIDI
loop to generate - either 1, 2, 4, or 8

style String Musical style: One of a predetermined set
of possible styles [e.g. piano, folk, rock,
cinematic, pop, chillout, corporate,
drum__and_ bass, ambient, synth__pop]

tonic Number Musical tonic (key): [0-11], with 0 = C

tonality String One of [natural _major, natural _minor]

As noted, not all of these composition parameters are
essential, and other different types of composition parameter
can be defined in different implementations. A key aspect of
the system is that a user is able to define the style they want
(alternatively the system can select the style autonomously
where it is not specified—see below), and the composition
engine 2 can provide compositions in different styles accord-
ing to the architecture described later.

The composition engine 2 is shown to comprise a plural-
ity of composition modules (e.g., networks), labelled 408A
and 408B. Each composition module is in the form of a
trained neural network, each of which has been trained on
quite specific types of musical training data such that it can
generate music in a particular style. In the following
examples the composition modules are referred to as net-
works, but the description applies equally to other forms of
ML or PSM composition module.

The composition parameters in each job request 406a,
4065 are used both to select an appropriate one of the
composition modules (e.g., networks) 408A, 408B and also
as inputs to the selected network. In this example, each of
the predetermined styles is associated with a respective
plurality of networks. By way of example, FIG. 4 shows the
first composition module (e.g., first networks) 408 A associ-
ated with a first style (Style A) and the second composition
module (e.g., second networks) 408B associated with a
second style (Style B).

Within each style group, suitable networks can be selected
for the task at hand. As will be appreciated, the manner in
which networks are selected will depend on how those
networks have been optimised in accordance with the prin-
ciples set out above.

For each job request 406a, 4065, a composition controller
408 of the composition engine 2 selects an appropriate
subset of the networks to service that job request. The
network subset is selected on the basis that is associated with
the musical style specified in the job request.

As noted, multiple parts—such as chords and melody—
can be requested in the same job request. This applies both
to internal and external requests to the composition engine
2.

Once generated, the MIDI segment(s) generated in
response to each job request are stored in a job database (24,
FIG. 1) in association with the assigned job ID. Alterna-
tively, MIDI segments could be stored in a separate database
and all description pertaining to the job database in this
context applies equally to the separate database in that event.

With reference to FIG. 5, networks associated with a
particular style cooperate to produce a plurality of musically

US 11,610,568 B2

15

cooperating elements. This is achieved by providing outputs
of the networks as input to other networks in a hierarchical
relationship.

To illustrate this underlying principle, FIG. 5 shows three
networks associated with Style A: chord (CN), melody
(MN) and harmony (HN), which correspond to the first
networks 408A in FIG. 4.

In this example, each of the networks CN, MN and HN is
shown configured to receive input 502 of composition
parameters determined by the composition controller 408 of
the composition engine 2 in the manner described above.
Although shown as the same input, the network need not
receive exactly the same parameters, and each can receive
different selections of the composition parameters for
example.

The chords network CN is configured to generate a chord
sequence 504 based on the input 502. This need not be
MIDI, and could for example be a symbolic chord repre-
sentation, but it may be convenient (though not essential) to
convert it to MIDI for subsequent processing. The generated
chord sequence is stored in the job database in association
with the applicable job D.

In addition, the melody network MN receives, as input,
the generated chord sequence 504 and generates a melody
506 based on the chord sequence 504 and the input 502 of
the composition settings, to accompany the chord sequence
in a musical fashion. That is, the melody 506 is built around
the chord progression 504 in the musical sense. The gener-
ated melody 506 is also stored in the job database 24 in
association with the applicable job D.

In addition, the melody 506 is inputted to the harmony
network HN. The harmony network HN generates, based on
the input 502 of the composition settings and the melody
506, a harmony 508 which it outputs as a MIDI segment,
which is a harmonization of the melody 506 in the musical
sense. Although not shown in FIG. 5, it may be appropriate
for the harmonization network HN to also receive the chord
sequence 504 as input, so that the harmony network HN can
harmonize the melody 506 and also fit the harmony 508 to
the chord sequence 504. The generated harmony 508 is also
stored in the job database 24 in association with the appli-
cable job D.

The chord sequence 504, melody 506 and harmony 508
can be requested in the same job request, and in that event
are stored together in the job database 24 in association with
the same job ID.

The output of each network can be, but need not be
MIDI— it could be some other digital musical notation
format, such as a bespoke format (see above). It may be
convenient, where the output is not MIDIL to convert it to
MIDI later, but this is not essential.

Networks can also take, as input, external MIDI, such as
a user-generated or library MIDI segment and compose
around this.

Another example of input that a network can compose to
is percussion, which can be user or ML generated. Here, the
percussion can for example drive the rhythm of the com-
posed segments, or the emphasis that is placed on certain
notes (where emphasis/velocity is handled at the composi-
tion engine 2).

Full Stack:

FIG. 1 is a schematic block diagram illustrating one
possible configuration of the music production system. The
music production system is organised into four layers or
components. It will be evident from the following that there
may be some overlap between functionality of the individual
layers or components, but the following description illus-

10

15

20

25

30

35

40

45

50

55

60

65

16

trates clearly how the generation of a piece of music is
organised in the music production system. The music pro-
duction system operates to receive a group of settings, which
will be described in more detail later, and generates a piece
of music. In the following, a piece of music is referred to as
a ‘track’, but it will be understood that the system can
produce music of any length/character. The track may be
generated as a musical score in a digital musical score
notation, such as MIDI, or in audio. Where score formats
other than MIDI are used it may be convenient (but not
essential) to convert it to MIDI for later processing. For this
reason a conversion layer (not shown) may be provided
within the system which converts a notation score into
MIDIL. It will be appreciated that this conversion layer could
form part of the composition engine itself or could form part
of another layer in the system that could receive a score and
convert to MIDI for the purpose of using MIDI.

A production management component (controller) 13
manages the layers of the system in the manner described
below. The controller 13 handles both internal and external
requests, and instigates functions at one or more of the layers
as needed in order to service each request.

Reference numeral 2 denotes the composition engine. The
composition engine operates to receive a group of settings,
which will be described in more detail later, and generates
MIDI segments to be arranged and produced into a track. It
generates segments of music in a symbolic format, to be
arranged and produced into a track. It uses a collection of
PSMs to generate the segments of music. These PSMs have
been trained on datasets of music tracks chosen to exemplify
a particular musical style. The composition engine deter-
mines which PSMs to employ on the basis of the input
settings.

Reference numeral 4 denotes an arrangement layer. The
arrangement layer has the job of arranging the MIDI seg-
ments, produced by the composition engine 2 into a musical
arrangement. The arrangement layer can be considered to
operate in two phases. In a first phase, it receives arrange-
ment parameters which will be described later and produces
from those parameters a musical arrangement as an envelope
defining timing and required sequences etc. The arrange-
ment functionality of the arrangement layer is marked 6.
This envelope defines the musical arrangement of a piece.
As will be described in more detail later, these settings can
be used to request MIDI segments from the composition
engine 2, through the production manager. A second phase
of the arrangement layer is the sequencing function 8.
According to the sequencing function, MIDI segments are
sequenced according to the arrangement envelope into a
finished piece of music. The MIDI segment may be provided
by the composition engine (as mentioned earlier), or may be
accessed from a pre-existing library of suitable MIDI seg-
ments, which can be generated in advance by the composi-
tion engine 2. The production management component 13
may for example check the library to see if suitable pre-
existing MIDI is available, and if not instigate a request to
the composition engine 2 to generate suitable MIDI. Alter-
natively, the library check can be performed at the compo-
sition engine 2 in response to a request, or alternatively the
library check can be omitted altogether. Further, MIDI
segments may be introduced by an external user as will be
described in more detail later. The arrangement layer 4
provides an arranged piece of music in MIDI form. In some
situations, this ‘raw’ piece of music might be suitable for
some purposes. However, in those circumstances, it will not
be playable in any useful form. Therefore, a performance

US 11,610,568 B2

17

layer 10 is provided which adds performance quality struc-
ture to the piece of music produced by the arrangement layer
4.

There is a decision tree in the arrangement section which
operates based on incoming settings. This decision tree
embodies human expertise, namely that of a human music
producer. The arrangement layer generates a musical
arrangement structure using the settings, which has a set of
time sequenced sections for which it then requests MIDI
from the composition engine (or elsewhere, e.g. from a
library), and which in turn are sequenced according to the
arrangement structure.

It is noted again that this is this is just one example of how
long-form structure can be created for a piece of music. As
an alternative to this separate arrangement layer, that oper-
ates ‘agnostically’ of the MIDI to be sequenced, arrange-
ment could be handled as part of the composition itself, in
the composition engine 2.

The performance layer outputs a performance quality
piece of music in MIDI. There are many applications where
this is useful. However, similarly, there are other applica-
tions where an audio version of the piece of music is
required. For this, an audio rendering layer 12 (audio
engine) is provided which outputs a performance quality
piece of music rendered in audio.

The conversion or rendering of a piece of music MIDI to
audio can be done in a number of different ways, and will not
be described further as these include ways that are known in
the art.

As noted, the music production engine has an access
component 14 which can be implemented in the form of an
API (application programming interface). This access com-
ponent enables communication within the music production
system (in particular, the production management compo-
nent 13 can communicate with the composition engine 2 via
the access component 14—see below), and also enables
functionality to be provided to external users. For the sake
of illustration, the side of the access component 14 facing
the music production system will be considered to be
responsible for internal routing between the layers via the
production management component, whereas the side facing
away will be responsible for inputs and outputs from an
external user. It will be appreciated that this is entirely
diagrammatic and that the API could be implemented in any
suitable way. As is known in the art, an API is implemented
using a piece of software executing on a processor within the
API to implement the functions of the API.

The API has at least one external input 16 for receiving
job requests from an external user and at least one external
output 18 for returning completed jobs to an external user.
In addition, in some embodiments, the API enables com-
munication between the internal layers of the music produc-
tion system as will be described.

Jobs which can be requested at the input 16 include the
following.

A request for tags can be input by a user which retrieves
a list of tags which are usable in providing settings to create
a musical track. Tags include musical styles such as piano,
folk et cetera. A full list of tags is given below by way of
example only. Tags are held in a tags store 20. Such a request
can also be used to request settings that are useable within
the system if desired.

Different types of tag can be defined, such as mood and
genre tags. Examples of genre tags include: Piano, Folk,
Rock, Ambient, Cinematic, Pop, Chillout, Corporate, Drum
and Bass, Synth Pop. Example of mood tags include:
Uplifting, Melancholic, Dark, Angry, Sparse, Meditative,

20

25

30

40

45

55

18

Sci-fi, Action, Emotive, Easy listening, Tech, Aggressive,
Tropical, Atmospheric. It may be that the system is config-
ured such that only certain combinations of genre and mood
tags are permitted, but this is a design choice. Note that this
is not an exhaustive list of tags—any suitable set of tags can
be used as will become apparent in due course when the role
of the tags in selecting composition and production settings
within the system is described.

Alibrary query can be provided at the input 16, the library
query generates a search to a paginated list of audio library
tracks which are held in a tracks store 22, or alternatively in
the jobs database 24. These can be stored in an editable
format which is described later. These are tracks which have
been already created by the music production system or
uploaded to the library from some other place. They are
stored in a fashion which renders them suitable for later
editing, as will be described in the track production process.

The library query for tracks returns the following param-
eters:

Job ID—+this is a unique identity of a track which has been
identified, and in particular is the unique 1D allowing
the track to be edited

Tags—these are tags associated with the track identifying
the style

Assets—this denotes the type of asset, i.e. MIDI or WAF

Duration—this denotes the length of the piece of music.
In song creation, the length of a piece of music is
generally around 3 minutes. However, pieces of music
may be generated for a number of purposes and may
have any suitable duration.

As will be appreciated, these are just examples, and the
request can return different parameters in different imple-
mentations.

The input 16 can also take requests to create jobs. The
jobs can be of different types.

A first type of job is to create an audio track. To achieve
this job, the user may supply a number of audio track create
settings which include:

Musical style

Duration—the length of the track

One or more tag—defining the style of the track

Tempo—the musical tempo of the track

Sync points—any particular place where there is to be a
concentration of intensity in the track or other events,
such as specific instrument entries at specific points or
any other events that lend musical character to the
track.

Intensity curve—generalization of sync points that allows
desired intensity variations in the track to be defined
with greater flexibility as a curve over time.

Note that not all of these parameters are required. The
system is capable of making some autonomous decisions
based on minimal information. For example, the system is
capable of creating an audio track if it is just supplied with
the duration. The production management component 13
itself will determine tags, tempo and sync points in that
event. In fact, the system is capable of generating a track
with no input settings—any of the settings can be selected
autonomously by the system if they are not provided in the
track request.

The production management component can also gener-
ate settings for one or more than one of the layers based on
the musical style. When generating a complete track this
involves generating, based on the style, both audio produc-
tion parameters for the audio production engine 3 and
composition parameters for the composition engine 2, as
described in more detail below.

US 11,610,568 B2

19

In the following, certain parameters may be referred to as
required. As will be appreciated, this simply refers to one
possible implementation in which these parameters are made
required parameters as a design choice. There is however no
fundamental requirement for any of the parameters to be
provided by a user, as it is always possible to configure the
system to autonomously select any desired parameter that is
not provided by a user.

A second type of job is to request a MIDI track to be
created. This job also requires the input of at least duration,
and optionally at least one tag, tempo and sync points.
Alternatively, duration can also be an optional parameter and
the system can select a duration autonomously if none is
provided.

A request for an audio track involves use of all of the
components of the music production system, including the
audio rendering layer to produce a track rendered in audio.
In this example, a request to create a MIDI track uses the
composition engine, the arrangement layer and performance
layer to produce a track in MIDI. It does not use the audio
rendering layer. As noted, the arrangement layer and per-
formance layer are optional components and the system can
be implemented without these. For example, the composi-
tion engine 2 can be configured to generate fully-arranged
MIDI with humanization where desired.

Track production is described later.

A third type of request is to edit an existing audio track.
Tracks are stored in a track library identified by unique job
identifiers, in the manner described below. A user must
supply the ID of the job to edit. Note that this could be
achieved by carrying out the library query mentioned earlier
in order to identify the correct job ID for the track that is
needed to be edited. The user can provide a new duration for
the track. Optionally, the tempo and sync points can be
defined. The output of this is a new version of the existing
track, edited as defined by the new settings. Alternatively,
the existing duration can be used if the user does not which
to change the duration and wishes to edit some other
aspect(s) of the track (or the system could even be config-
ured to select a duration autonomously if none is provided
but a change of duration is nonetheless desired). The system
is able to handle edit requests because sufficient information
about the decisions made by the system at every stage is
stored in the job database 24 against the track ID as
described below.

The system may also be equipped to handle requests to
edit a MIDI track as described later. These can be handled
in much the same way as audio track edit requests, but the
resulting output is MIDI rather than audio.

A fourth job is to create a MIDI loop. This is a job carried
out by the composition engine and can take in a different set
of parameters to the other jobs. It has as a minimum to
receive the lengths in measures of the MIDI loop to generate
(either 1, 2, 4 or 8—though this is just an example).
Alternatively, length can be an optional parameter and the
system can select a length autonomously if none is provided.
In addition, styles may be specified, for example one of
piano, folk, rock, cinematic, pop, chill out, corporate, drum
and bass, ambient, synth pop. These can be specified as tags
in the above sense. The tonic number can be provided [0-11],
with 0=C, and/or the tonality can be provided as one of
natural_major and natural_minor for example. As will be
described later, the composition engine is capable of gen-
erating MIDI loops according to such parameters. In addi-
tion, an enable parameter can be provided which turns on
velocity, timing and humanisation of the MIDI. Alterna-

15

30

35

40

45

50

55

20

tively separate parameters can be provided to allow these to
be enabled/disabled independently.

A similar job is to create an audio loop. This is similar to
a MIDI loop request, but involves the production engine.
This can be achieved by the production engine requesting a
MIDI loop(s), which it then causes to be rendered to provide
loopable audio.

FIG. 9 shows one example of an architecture for imple-
menting the APl 14. A key feature of the API 14 in this
architecture is that it can handle both internal and external
job requests in the same way. That is, both job requests
originating outside of the music production system and job
requests instigated by a component of the system itself that
are directed to other components of the system. A particular
example of this is the “MIDI as a service” function provided
by the composition engine 2, which is available both to an
external user but also to components of the system itself,
such as the production manager 13.

Each incoming request at the API 14, whether internal or
external, is assigned to one of a number of job queues 31
depending on the type of the request. In this example, a
composition job queue 34 is shown coupled to the compo-
sition engine 2. A production job queue 32 and a MIDI job
queue 32A are shown coupled to the production manage-
ment component 13. These two queues 32, 32A are provided
for holding different types of request that are handled by the
production management component 13. Jobs allocated to the
production job queue 32 relate to audio tracks involving the
audio engine 12, whereas jobs allocated to the MIDI jobs
queue 32A relate to MIDI and do not involve the audio
engine 12. That is, the production management component
can handle both audio and MIDI requests.

Certain types of request ‘bypass’ the production engine 3
and production management component 13 and are allocated
to the composition job queue 34 for processing by the
composition engine 2, without the involvement of the pro-
duction engine 3 or production management component 13.
Such requests can originate from an external device or from
the production management component 13.

Requests that are to be serviced by the production man-
agement component 13, such as a request for a whole track
or a request to edit a track (see below) are allocated to the
production job queue 32 in the case of audio and the MIDI
job queue 32A in the case of MIDI for processing by the
production management component 13. As described in
further detail later, such a request received at the production
management component 13 can result in the production
management component 13 instigating one or more internal
requests of its own to the composition engine 2 via the same
API 14, which in turn are allocated to the composition job
queue 34 for processing by the composition engine 2.

Although not shown in FIG. 9, it can be convenient to
provide a separate jobs queue for each type of request the
API 14 can handle. Accordingly, there may in fact be
multiple audio-type job queues (e.g. audio creation and
audio editing) and multiple MIDI-type job queues (e.g.
MIDI creation and MIDI editing) coupled to the production
management component 13.

A track creation task will now be described with reference
to FIG. 2. In FIG. 2, numbers in circles represent steps of a
method, and are distinct from reference numerals denoting
particular elements of the structure. Elements of the struc-
ture shown in FIG. 2 correspond to those discussed in FIG.
1 and are marked with reference numeral corresponding to
that in FIG. 1.

A human user can provide a job request 30 in step 1 at the
input 16 of the API 14. The job request 30 can in principle

US 11,610,568 B2

21

be any of the job types which have been described above, but
the present part of the description relates to creation of an
audio track or MIDI track. The job request 30 defines at least
one parameter for defining the creation of those tracks, as
described above. Alternatively, as noted, the job request 30
may define no parameters, and all parameters may in that
event be selected autonomously by the system. At step 2,
within the API 14, a job identifier is assigned to the job
request 30. This is referred to herein as ID A. The job is then
assigned to the production job queue 32 which is associated
with the production manager 13. The allocation of the job ID
A to the production queue is denoted by step 3.

At step 4, the production manager operates to produce a
track. The production manager 13 has access to the arrange-
ment layer 4, the performance layer 10 and the audio
rendering layer 12. Note that in FIG. 2 the performance layer
is not shown separately but is considered to be available to
the production manager as needed. The production manager
13 operates in association with the arrangement layer 4
according to an artificial intelligence model embodied in the
production layer. This can be embodied by a decision tree
which incorporates human expertise and knowledge to guide
the production layer through production of a track, however
other implementations are possible. For example, as noted
already, the production engine can be implemented using
ML. This decision tree causes the production manager 13 to
access the arrangement layer 4 as indicated at step 5. The
arrangement layer 4 operates to provide a musical arrange-
ment which consists of at least timing and desired time
signature (number of beats in a bar) and returns an arrange-
ment envelope to the production manager 13 as shown in
step Sa. The production manager 13 is then activated to
request MIDI segments which will be sequenced into the
arrangement provided by the arrangement layer 4. As indi-
cated above, this is just one possible implementation that is
described by way of example. In particular, as noted above,
the system can be implemented without one or both of the
arrangement layer 4 and performance layer 8, with the
functions of these layers when desired handled elsewhere in
the system, e.g. incorporated into the operation of the
composition engine 2. This request can also be applied
through an API input, referred to herein as the internal API
input 17. For example, the production manager 13 can
generate a plurality of MIDI job requests; for example these
are shown in FIG. 2 labelled B1, B2, B3 respectively. Each
of the MIDI job requests are applied to the internal input 17
of'the API 14. The API 14 assigns job identifiers to the MIDI
job requests, indicated as ID B1, ID B2 and ID B3 and these
jobs labelled with the unique identifiers are supplied to the
MIDI jobs queue 34 in step 8. The identifiers are returned to
the production manager 13. This is shown by step 7.

The jobs with their unique identifiers are assigned to the
composition engine 2 which can generate using artificial
intelligence/machine learning individual MIDI segments.
The composition engine has been trained as described
above.

The composition engine 2 outputs MIDI segments as
indicated at step 9 into the job database 24. The MIDI
segments could be stored in a separate database or could be
stored in the same job database as other completed jobs to
be described. Each MIDI segment is stored in association
with its unique identifier so that it can be recalled. The
production manager 13 periodically polls the API 14 to see
whether or not the jobs identified by ID B1, ID B2 and ID
B3 have been completed as described in the next paragraph.
This is shown at step 10. When they are ready for access,
they are returned to the production manager 13 who can

10

15

20

25

30

35

40

45

50

55

60

65

22

supply them to the arrangement layer for sequencing as
described above. The sequenced segments are returned via
the production manager 13 either to an output (when a MIDI
track is desired), or to the audio rendering layer 12 (step 12)
when an audio track is required.

Assigning job IDs in this way has various benefits.
Because the job ID is assigned to a request when that request
is received, a response to that request comprising the job ID
can be returned immediately by the API 14 to the source of
the request, before the request has actually been actioned
(which depending on the nature of the request could take
several seconds or more particularly in the case of audio).
For example, a request for audio or MIDI can be returned
before the audio or MIDI has actually been generated or
retrieved. The source of the request can then use the returned
job ID to query the system (repeatedly if necessary) as to
whether the requested data (e.g. audio or MIDI) is ready, and
when ready the system can return the requested data in
response. This avoids the need to keep connections open
whilst the request is processed which has benefits in terms
of reliability and security.

Audio Engine:

There now follows a description of how audio is rendered
in the music production system described herein. Reference
is made to FIGS. 1 and 2. A request for an audio track is one
of the job types mentioned above which can be received at
the input 16 of the API 14. In this context, the API provides
a computer interface for receiving a request for an audio
track. In this connection, an audio track is an audio rendered
piece of music of any appropriate length. It is assumed that
it is a completed piece of music in the sense that it can be
rendered in audio data and listened to as a complete musical
composition. The incoming request is assigned a Job ID. As
mentioned above, the request can include one or more
parameter for creating an audio track. Note that, as also
mentioned before, it is possible to request a track without
supplying any track creation parameters, in which case the
system can use a default track creation process, involving for
example default parameters. Such default parameters would
be produced at the production management component 13
responsive to the request at the input 16. For example, a
default duration may be preconfigured at 90s. Other default
lengths are possible. Based on the request, multiple musical
parts are determined. These may be determined at the
production management component 13 based on input
parameters in the request supplied at the input 16, or from
parameters generated by the production management com-
ponent. Alternatively, the musical parts may be provided in
the request itself by the user making the request. In this case,
musical parts may be extracted from the request by the
production management component 13. This provides the
music production system with extensive flexibility. That is,
it can either work with no input from a user, or with many
constraints supplied by a user, including track creation
parameters and/or musical parts. The determination of musi-
cal parts is shown in step S602. Audio production settings
are also generated from the request received from a user as
shown in step S601. This is shown in step S603. Note that
step S602 and S603 could be carried out in sequence or in
parallel. They may be carried out by the production man-
agement component, or any suitable component within the
music production system.

The audio production settings and musical parts are
supplied to the audio rendering component, at step S604. In
addition, a sequence of musical segments in digital musical
notation format is supplied to the audio rendering compo-
nent. This sequence is generated by the composition engine

US 11,610,568 B2

23

or obtained elsewhere and is in the form of MIDI segments.
These MIDI segments can be generated as described earlier
in the present description, although they do not need to be
generated in this way. Furthermore, it will be appreciated
that an arranged sequence of MIDI segments could be
supplied to the audio rendering component 12. This arranged
sequence could be derived from the arrangement component
4 as described earlier, or could be an arranged sequence
generated by a combined composition and arrangement
engine. Alternatively, an arranged MIDI sequence could be
provided by the user who made the audio track request.

The audio rendering component 12 uses the audio pro-
duction settings, the musical parts and the MIDI sequence to
render audio data of an audio track at step S605. At step
S606, the audio track is returned to the user who made the
request through the output port 18 of the API component.

A more detailed description will now be given a step 603
in which the audio production settings are chosen. The
production management component 13 uses one or more
tags to access a database of settings labelled 23 in FIG. 1.
The tag or tags may be defined in the request which is input
at the input 16, or may be generated by the production
management component from information in the input
request, or generated autonomously at the production man-
agement component.

For example, if a style parameter is defined in the request,
tags appropriate to that style parameter can be requested
from the tags database 20. Alternatively, one or more tag
may be selected at random by the production component 13.
The structure of the database of settings 23 is shown in FIG.
7. The database 23 is queryable using tags, because each
arrangement settings database object is associated with one
or more of the tags. There is no limit to the number of tags
which may be associated with a single arrangement settings
object. The database of arrangement settings objects can be
queried by providing one or multiple tags and returning all
arrangement settings objects which are marked with all of
the provided tags. An arrangement settings object O1 is
shown in the database 23 associated with tags T1 and T2, but
the object O1 can be associated with any number of tags.
Each arrangement settings object comprises three groups of
settings. There is a group of arrangements setting 70, a group
of composition settings 72 and a group of audio settings 74.
This is just an example and there can be more or fewer
groups of settings. As will be appreciated, the grouping of
the settings reflects the architecture of the system, which can
be designed flexibly as noted. For example, arrangement
settings 70 may be incorporated in the composition settings
72 where arrangement is handled as part of composition.

The groups have been defined to co-operate in a finished
musical piece in accordance with the style indicated by the
tag(s). As described already, tags can define such things as
genre/mood/instruments. The settings recalled by the pro-
duction management components 13 from the settings data-
base 23 are used to control production of the music. A
particular collection of settings can be selected from each
group for each musical part, or one or more of the settings
may apply to multiple musical parts. Reference is made to
FIG. 8 to show the selection flow for audio production. An
instrument is selected for each part from the group of audio
settings for the particular tag or tags. This is denoted by
crosshatching in FIG. 8. One way of selecting the instrument
for each part is to select it randomly from the group of
settings appropriate to that part. Within the audio settings
there may be a category of settings associated with each part,
for example bass, melody, harmony et cetera.

10

15

20

25

30

35

40

45

50

55

60

65

24

A particular sound for the instrument is chosen by select-
ing a setting from a group of sound settings. This selection
may be at random. One or more audio effects may be
selected for each sound. Once again, this may be selected at
random from a group of audio effects appropriate to the
particular sound. In order to implement these selections, the
production management component 13 uses a decision tree
in which knowledge about the suitability of particular instru-
ments for particular parts, particular sounds, for particular
instruments and particular audio effects has been embedded.

The term “sound” in this context means a virtual instru-
ment preset. Virtual instrument is a term of art and means a
software synthesiser, and a virtual instrument preset refers to
a particular virtual instrument preferably together with a set
of one or more settings for configuring that virtual instru-
ment. The virtual instrument preset defines a particular
virtual instrument and the timbre or sonic qualities of the
virtual instrument. Different virtual instrument presets can
relate to the same or different virtual instruments. E.g. for a
virtual instrument which emulates a piano, there might be a
preset which makes the virtual instrument sound like a grand
piano, and another which makes it sound like an upright
piano. It is these presets that the system selects between
when choosing the sound for an instrument. It can be
convenient to bundle the settings that make up a virtual
instrument present into a single file.

The composition settings associated with the tag can be
supplied to the composition engine 2 for controlling the
output of MIDI segments to incorporate into the track. The
arrangements settings 70 associated with the tag can be
applied to the arrangement layer 4 for use in determining
how the MIDI segments from the composition engine should
be arranged as governed by the tag.

Finished tracks are stored in the job database 24 in
connection with the job ID that was assigned to the incoming
request.

The track may be stored in terms of the settings (track
settings 80) which were selected to generate it, along with
the sequenced MIDI and/or the un-sequenced MIDI loop(s)
or other segment(s) output from the composition engine 2,
instead of as the audio data itself. Then, this sequenced
MIDI can be supplied to the audio rendering component 12
with the musical parts and the selected audio production
settings (as in step S604 of the flow of FIG. 6) to regenerate
the track. The track settings 80 are made up of not only the
selected audio settings 84, but also the composition settings
82 and arrangement settings 81. That is to say, the track
settings 80 contain all of the choices made by the production
management component 13 and thus all of the settings
needed to completely reproduce a track. In order to repro-
duce an identical track, these stored track settings 80 can be
used at step S604 in FIG. 6 to create a duplicate track. In this
context, the track settings 80 are referred to as reproduc-
ibility settings.

Returning to FIG. 2, in the context of a request for a track,
the assigned job ID (ID A) constitutes an identifier of the
track. The track settings 80 are stored in the job database 24
in association with the track identifier ID A. In addition, the
identifiers ID B1, ID B2 and ID B3 are stored in the job
database 24 in association with the track identifier IDA such
that the pieces of MIDI used to build the track can be
retrieved using the track identifier ID A. These can be
sequenced or un-sequenced MIDI segments, or a combina-
tion of both. The information stored in the job database 24
in association with ID A is sufficiently comprehensive that
the track can be reproduced using that information at a later
time.

US 11,610,568 B2

25

An example process for editing an existing track will now
be described with reference to FIG. 11, which shows an edit
request 52 being received at the API 14 in step S1102. The
edit request 52 is shown to comprise a job ID 54 of a track
to be edited and at least one new setting 56 according to
which the track should be edited. An edit request is in effect
a request to create a brand new track, but doing so using at
least one of the settings and/or MIDI segments that were
used to generate an earlier track. The track being edited can
be an audio track or a MIDI track. At step of S1104, a
response 59 to the edit request 52 is returned to a source of
the request 52. The response 59 comprises a job ID 58 which
is a job ID assigned to the edit request 52 itself. Note that
this job ID 58 of the edit request 52 itself is different to the
job ID 54 of the track to be edited, which was assigned to
an earlier request that caused that track to be created (this
earlier request could have been a request to create the track
from scratch or could itself have been a request to edit an
existing track). At step S1106 the edit request 52 is provided
to the production management component 13 in the manner
described above. Using the job ID 54 of the track to be
edited, the production manager 13 queries (S1108) the job
database 24 using the job ID 54 in order to retrieve the track
settings 80 associated with the job ID 54, which it receives
at step S1110. Where the track settings 80 comprise one or
more references to MIDI segments used to create the track
these can also be retrieved by the production manager 13 if
needed. As noted, such references can be in the form of job
1Ds where the MIDI segments are stored in the jobs database
24 or they can be references to a separate database in which
the MIDI segments are held. From this point, the method
proceeds in the same way as described with reference to
FIG. 6 but for the fact that the track settings used to create
the edited version of the track are a combination of one or
more of the track settings 80 retrieved from the job database
24 and the one or more new settings 56 provided in the edit
request 52.

One example of a new setting 56 is a track duration, which
a user can provide if he wants to create a longer or shorter
version of an existing track. In a simple case, all of the
original track settings 80 can be used to create the edited
version of the track, along with the original MIDI segments,
but with the original duration substituted for the new dura-
tion. Alternatively, new MIDI segments could be composed
that are more suitable for the new duration, which involves
an internal request to the composition engine 2. This is just
a simple example and more complex track editing is envis-
aged. Note that, although in the example of FIG. 11, the one
more new settings 56 are provided in the edit request 52, in
a more complex scenario the production manager 13 may in
fact select such new setting(s) 56 itself in response to the edit
request 52, for example by selecting additional settings
based on a setting indicated in the edit request 52 or by
selecting new setting(s) autonomously by some other means.

As shown at step S1112 in FIG. 11, the job ID 58 assigned
to the edit request 52 is stored in the job database 24 in the
same way as for other requests along with the track settings
for the edited track which are labelled 80'. The track settings
80" are the settings that have been used to generate the edited
version of the track and as noted these are made up of a
combination of one or more of the original track settings 80
with the new setting(s) 56 determined in response to the edit
request 52 in the manner described above.

The various components referred to above and in particu-
lar the production management component 13, the produc-
tion engine 3 (that is, the audio rendering component 12, the
performance component 10 and the arrangement component

20

25

30

35

40

45

55

26

4) and the composition engine 2 are functional components
of the system that are implemented in software. That is, the
composition system comprises one or more processing
units—such as general purpose CPUs, special purpose pro-
cessing units such as GPUs or other specialized processing
hardware, or a combination of general and special purpose
processing hardware—configured to execute computer-
readable instructions (code) which cause the one or more
processing units to implement the functionality of each
component described herein. Specialized processing hard-
ware such as GPUs may be particularly appropriate for
implementing certain parts of the ML functionality of the
composition engine 2 and the other components also when
those are implemented using ML. The processing unit(s) can
be embodied in a computer device or network of cooperating
computer devices, such as a server or network of servers.

FIG. 10 shows a schematic block diagram illustrating
some of the structure of the API 14, which is shown to
comprise a computer interface 42 and a request manager 44
coupled to the computer interface 42. The request manager
44 manages the requests received at the computer interface
42 as described above. In particular, the request manager 44
allocates each request to an appropriate one of the job
queues 31 and assigns a unique job identifier (ID) to each
request (both internal and external). The job IDs service
various purposes which are described later. The API 14 can
be implemented as a server (API server) or server pool. For
the latter, the request manager 42 can be realized as a pool
of servers and the computer interface 42 can be provided at
least in part by a load balancer which receives requests on
behalf of the server pool and allocates each request to one of
the servers of the server pool 44, which in turn allocates it
to the appropriate job queue. More generally, the API 14 is
in the form of at least one computer device (such as a
service) and any associated hardware configured to perform
the API functions described herein. The computer interface
42 represents the combination of hardware and software that
sends and received requests, and the request manager 44
represents the combination of hardware and software that
manages those requests. Requests are directed to a network
address of the computer interface, such as a URL or URI
associated therewith. The API 14 can be a Web API, with at
least one Web address provided for this purpose. One or
multiple such network addresses can be provided for receiv-
ing incoming requests.

Learning Automatically from Feedback

The system incorporates machine learning (ML) compo-
nents such as neural networks, for example in the compo-
sition engine 2 as described later. These are trainable com-
ponents which can learn from feedback that is provided as
users engage with the system.

The underlying technology takes advantage of an efficient
feedback loop denoted in FIG. 12 by reference numeral
1200: the more that users interact with Jukedeck’s Al
software to create, listen to, alter and ultimately download
audio tracks, the more accomplished at composing music the
ML components become as the user data is fed back into the
system. The ability to harness this user data allows the
underlying technology to be improved continuously based
on user interactions.

Accordingly, at least one of the components of the Juke-
deck system, such as the composition engine 2 or production
engine 3, may be configured to adapt its operation based on
information collected from users of the system. This infor-
mation can be collected from a variety of sources, such as
track or MIDI creation requests, retrieval requests, edit

US 11,610,568 B2

27

requests, download requests etc., or any other source of
information that is available from the users of the system.

Applications

The technology is applicable in any situation in which
music is used, making it relevant across numerous catego-
ries including audio for visual/immersive media (e.g. video,
social media, television, advertising, gaming, virtual reality,
etc.), personal listening (e.g. music streaming, radio, etc.),
and music creation tools (e.g. music production software).

Visual/Immersive Media (e.g. Video, Social Media,
Advertising, Gaming, AR/VR, Etc.)

More content is being created than ever before, including
user-generated videos, video advertisements, games, and
augmented and virtual reality content. However, sourcing
music for this content has traditionally been extremely
difficult; music is generally expensive, rights are restrictive,
and manual editing is required to make the music fit the
content in question.

The present technology solves these problems, providing
low-cost, rights-cleared, personalized content at scale. Fur-
thermore, the system’s ability to create audio tracks in
response to a wide variety of data inputs opens up a whole
new realm of possibilities for audio-visual experiences,
allowing music to be personalized to a content consumer
based on inputs such as taste in music (genre, tempo, etc.),
situational data (mood, time of day, etc.) and demographic
data (location, age, gender, etc.), making the content sig-
nificantly more effective.

Additionally, the ability of the automatic music produc-
tion engine 3 to rearrange pre-rendered, human-composed
stems means that human-composed songs in existing pro-
duction libraries can be adapted to fit users’ needs. For
instance, multiple different versions of a track of different
lengths can be generated automatically.

Personalization Use-Cases

A use case is dynamic music creation, through which
unique, personalized music can be generated for individual
users, specific to their tastes in music and influenced by a
variety of other factors, including their mood, the time of
day, their location, and other contextual inputs. Moreover,
the present technology enables music to react to these
factors in real-time.

Music Creation Tools (e.g. Music Production Software)

Historically, music creation has largely been the domain
of experts, because of music’s high degree of complexity.
Over time, successive technological advancements (e.g. the
synthesizer, the Digital Audio Workstation) have allowed
larger numbers of people to engage with the music-making
process. The present technology is a further advancement: it
can be used to provide musical assistance to those who are
less skilled in music (such as harmonizing their melodies) or
provide musical inspiration, as well as increased efficiency,
to those who are more skilled.

SUMMARY

The dynamic music creation capabilities described herein
can be used to: (i) provide soundtracks for various types of
content and in various scenarios (e.g. videos, advertising,
video games, retail), (ii) provide audio tracks for distribution
via traditional music distribution channels (streaming ser-
vices etc.), which may dynamically respond to factors
specific to the listener, and (iii) provide tools to musicians to
aid them in the creative process.

Whilst the above has been described in terms of specific
embodiments, these are not exhaustive. The scope of the

25

30

35

40

45

50

55

65

28

invention is not defined by the described embodiments but
only by the accompanying claims.

The invention claimed is:

1. A music production system comprising:

a computer interface comprising at least one input for
receiving an external request for a piece of music and
at least one output for transmitting a response to the
external request which comprises or indicates a piece of
music incorporating first music data;

a first music production component configured to process
second music data according to at least a first input
setting so as to generate the first music data, wherein
the second music data comprises at least one music
segment in digital musical notation format;

a second music production component configured to
receive via the computer interface an internal request,
and provide the second music data based on at least a
second input setting denoted by the internal request;
and

a controller configured to determine in response to the
external request the first input setting, and instigate the
internal request via the computer interface, wherein the
controller is configured to determine search criteria in
response to the external request, search a library for the
at least one music segment matching the search criteria,
and instigate the internal request when no matching
segment is located.

2. A music production system according to claim 1,
wherein the second music production component is config-
ured to select the at least one music segment from a library
according to the second input setting.

3. A music production system according to claim 1,
wherein the second music production component is config-
ured to search a library for a music segment matching the
second input setting, and if a matching segment is located,
provide the located matching segment to the first music
production component, and if no matching segment is
located, cause a composition engine of the music production
system to generate a music segment according to the second
input setting and provide the generated music segment to the
first production component.

4. A music production system according to claim 1,
wherein the first music production component is an audio
engine configured to generate the first music data as audio
data.

5. A music production system according to claim 1,
wherein the audio engine is configured to render the at least
one music segment according to the first input setting to
generate audio data.

6. A music production system according to claim 1,
wherein the first music production component is configured
to generate the first music data in the form of at least one
music segment in digital musical notation format.

7. A music production system according to claim 6,
wherein a request manager is configured to allocate each
request based on a type of the request.

8. A music production system according to claim 6,
wherein a request manager is configured to allocate the
external request to a first queue for processing by the
controller, and the internal request to a second queue for
processing by the second music production component.

9. A music production system according to claim 1,
comprising a request manager configured to allocate the
external request to the controller and the internal request to
the second music production component.

US 11,610,568 B2

29

10. A music production system according to claim 9,
wherein a type of the request comprises at least one of an
audio type or a musical notation type.

11. A music production system according to claim 1,
wherein the first or second input settings comprise at least
one of the following: a style parameter, a time signature; a
track duration, a number of musical measures, and one or
more musical parts.

12. A music production system according to claim 1,
wherein the second music data is rendered available to the
controller by a response to the internal request.

13. A music production system according to claim 12,
wherein the second music production component is config-
ured to store the second music data in a database in asso-
ciation with an identifier, wherein the response comprises
the identifier and thereby renders the second music data
available to the controller.

14. A music production system according to claim 1,
comprising a request manager configured to assign respec-
tive identifiers to the external and internal requests, wherein
the controller is configured to store, in electronic storage, the
first music data in association with the identifier assigned to
the external request and the second music data in association
with the identifier assigned to the internal request.

15. A music production system according to claim 1,
wherein at least one of the first music production component
and the second music production component is configured to
generate music segments for the library.

10

15

20

25

30

16. A method of performing music production, compris-
ing:

receiving, at a computer interface, an external request for

a piece of music;

determining in response to the external request at least a

first input setting;

determining search criteria in response to the external

request searching a library for at least one segment
matching the search criteria;

instigating via the computer interface an internal request

when no matching segment is located;

at a second music production component, receiving the

internal request via the computer interface, and provid-
ing second music data based on at least a second input
setting denoted by the internal request, wherein the
second music data comprises at least one music seg-
ment in digital musical notation format;

at a first music production component, processing the

second music data according to the first input setting so
as to generate first music data; and

transmitting a response to the external request which

comprises or indicates the piece of music incorporating
the first music data.

17. A computer program product comprising executable
instructions stored on a non-transitory computer-readable
storage medium and configured, when executed at a music
production system, to cause the music production system to
implement the method of claim 16.

#* #* #* #* #*

